Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

Insegnamenti a scelta Impianti, dispositivi e circuiti per applicazioni biomediche

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023

Modulo: Fisiologia

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare BIO/09
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Docente Non assegnato

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Tecniche analitiche per la biochimica

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare CHIM/10
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Docente MARIATERESA RUSSO
Obiettivi N.D.
Programma N.D.
Testi docente N.D.
Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No
Erogazione 72037M SICUREZZA ALIMENTARE E TECNICHE ANALITICHE PER IL CONTROLLO in SCIENZE E TECNOLOGIE ALIMENTARI LM-70 RUSSO MARIATERESA
Docente Mariateresa RUSSO

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Materiali per la biomedica

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare ING-IND/22
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Erogazione 1001498 Materiali per la biomedica in Ingegneria Industriale L-9 MALARA ANGELA
Docente Angela MALARA
Obiettivi N.D.
Programma Le proprietà dei materiali metallici, polimerici e ceramici per la biomedica. Relazione tra struttura e proprietà.
Le proprietà delle principali strutture biologiche: tessuti duri e tessuti molli, pelle, ossa, muscoli, cartilagini.
I biomateriali e le interazioni con i sistemi biologici: definizione di tossicità, biocompatibilità e bioattività.
Applicazioni in campo chirurgico, cardio-vascolare, ortopedico, dentale, oftalmico.
Materiali per Biosensori e applicazioni. Biosensori potenziometrici, resistivi, elettrochimici, amperometrici, a impedenza.
Testi docente "Biological Materials and Biomaterials" in Foundations of Materials Science and Engineering, W.F. Smith, J. Hashemi; McGraw-Hill
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Circuiti ed algoritmi per il trattamento dei segnali

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare ING-IND/31
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Erogazione 36M061 TRATTAMENTO DEI SEGNALI AMBIENTALI in Ingegneria per la gestione sostenibile dell'ambiente e dell'energia LM-30 LM-30 MORABITO FRANCESCO CARLO
Docente Francesco Carlo MORABITO
Obiettivi N.D.
Programma Introduzione al trattamento dei Segnali (CFU 1)

Generalità sul trattamento dei segnali, segnali analogici, campionamento e conversione AD e DA, segnali a tempo discreto (numerici), equazioni alle differenze lineari a coefficienti costanti, rappresentazione nel dominio del tempo e della frequenza, segnali aleatori multi-dimensionali, statistiche di ordine superiore al secondo, processi stocastici, concetti di teoria della stima, metodo della massima verosimiglianza, stima del minimo errore quadratico medio, metodo della massima probabilità a posteriori, elementi di teoria dell’informazione, entropia informazionale, informazione mutua, negentropia, correntropia, metodo di stima a massima entropia, metodi di ottimizzazione.
Rappresentazione di sistemi digitali mediante grafi e schemi a blocchi, strutture di rete fondamentali per sistemi FIR e IIR.

Algoritmi di Soft Computing e di Analisi Multirisoluzione e Multidimensionale (CFU 2)

Sistemi adattivi, stima del gradiente, metodi iterativi, apprendimento Hebbiano, reti auto-organizzanti.
Pattern recognition: formulazioni, classificatori lineari e non lineari, trattamento dell’incertezza, problemi rappresentativi in diversi ambiti di ricerca.
Algoritmi avanzati per l’elaborazione dei segnali, studio serie temporali, Analisi nel dominio della frequenza, Trasformata di Fourier, Short-Time Fourier Transform, analisi di segnali nel dominio tempo-frequenza, elaborazione di segnali non stazionari, segnali e sistemi non lineari, trasformata Wavelet Continua e Discreta, decomposizione Wavelet, applicazioni pratiche della trasformata Wavelet, Principal Component Analysis (PCA), Independent Component Analysis (ICA), applicazioni PCA e ICA.

Implementazione numerica degli algoritmi (CFU 1)

Introduzione al MATLAB, nozioni preliminari, potenzialità e limiti del software, programmare con l’editor di MATLAB; introduzione all’uso dei Toolboxes: Signal Processing, Wavelet, Algoritmi PCA e ICA, EEGLAB, ICA-lab, FAST-ICA.

Introduzione ai segnali ambientali (CFU 1)

Nozione di segnale ambientale; tecniche di rilievo di segnali e dati ambientali; manipolazione di database di natura ambientale; elementi di data mining; gestione delle informazioni e dati ambientali.

Tecniche di elaborazione dei segnali ambientali (CFU1)

Sistemi di acquisizione e conversione A/D; interfacce di acquisizione; sensori per la registrazione di segnali ambientali; raccolta e selezione di campioni; sistemi statistici per il trattamento di dati ambientali; trattamento outliers; Teoria della decisione statistica.
Implementazione di algoritmi per l’analisi multi-risoluzione e multidimensionale di segnali ambientali; modelli per la simulazione di sistemi ambientali; elaborazione numerica di segnali ambientali; rumore; progettazione ed implementazione di circuiti e sistemi per il trattamento di segnali ambientali esempi di dati meteorologici e satellitari; esercitazioni di laboratorio.
Testi docente Principe, Eliano, Neural and Adaptive Systems, IEEE
Bishop, Statistical Pattern Recognition, Oxford University Press
Materiale del corso fornito dal docente
Audio-lezioni del docente
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Bioingegneria elettronica

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare ING-INF/06
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Docente Non assegnato
Obiettivi N.D.
Programma Introduzione al trattamento dei Segnali (CFU 1)

Generalità sul trattamento dei segnali, segnali analogici, campionamento e conversione AD e DA, segnali a tempo discreto (numerici), equazioni alle differenze lineari a coefficienti costanti, rappresentazione nel dominio del tempo e della frequenza, segnali aleatori multi-dimensionali, statistiche di ordine superiore al secondo, processi stocastici, concetti di teoria della stima, metodo della massima verosimiglianza, stima del minimo errore quadratico medio, metodo della massima probabilità a posteriori, elementi di teoria dell’informazione, entropia informazionale, informazione mutua, negentropia, correntropia, metodo di stima a massima entropia, metodi di ottimizzazione.
Rappresentazione di sistemi digitali mediante grafi e schemi a blocchi, strutture di rete fondamentali per sistemi FIR e IIR.

Algoritmi di Soft Computing e di Analisi Multirisoluzione e Multidimensionale (CFU 2)

Sistemi adattivi, stima del gradiente, metodi iterativi, apprendimento Hebbiano, reti auto-organizzanti.
Pattern recognition: formulazioni, classificatori lineari e non lineari, trattamento dell’incertezza, problemi rappresentativi in diversi ambiti di ricerca.
Algoritmi avanzati per l’elaborazione dei segnali, studio serie temporali, Analisi nel dominio della frequenza, Trasformata di Fourier, Short-Time Fourier Transform, analisi di segnali nel dominio tempo-frequenza, elaborazione di segnali non stazionari, segnali e sistemi non lineari, trasformata Wavelet Continua e Discreta, decomposizione Wavelet, applicazioni pratiche della trasformata Wavelet, Principal Component Analysis (PCA), Independent Component Analysis (ICA), applicazioni PCA e ICA.

Implementazione numerica degli algoritmi (CFU 1)

Introduzione al MATLAB, nozioni preliminari, potenzialità e limiti del software, programmare con l’editor di MATLAB; introduzione all’uso dei Toolboxes: Signal Processing, Wavelet, Algoritmi PCA e ICA, EEGLAB, ICA-lab, FAST-ICA.

Introduzione ai segnali ambientali (CFU 1)

Nozione di segnale ambientale; tecniche di rilievo di segnali e dati ambientali; manipolazione di database di natura ambientale; elementi di data mining; gestione delle informazioni e dati ambientali.

Tecniche di elaborazione dei segnali ambientali (CFU1)

Sistemi di acquisizione e conversione A/D; interfacce di acquisizione; sensori per la registrazione di segnali ambientali; raccolta e selezione di campioni; sistemi statistici per il trattamento di dati ambientali; trattamento outliers; Teoria della decisione statistica.
Implementazione di algoritmi per l’analisi multi-risoluzione e multidimensionale di segnali ambientali; modelli per la simulazione di sistemi ambientali; elaborazione numerica di segnali ambientali; rumore; progettazione ed implementazione di circuiti e sistemi per il trattamento di segnali ambientali esempi di dati meteorologici e satellitari; esercitazioni di laboratorio.
Testi docente Principe, Eliano, Neural and Adaptive Systems, IEEE
Bishop, Statistical Pattern Recognition, Oxford University Press
Materiale del corso fornito dal docente
Audio-lezioni del docente
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: Calcolo numerico

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Impianti, dispositivi e circuiti per applicazioni biomediche
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare MAT/08
Anno Secondo anno
Unità temporale Secondo semestre
Ore aula 48
Attività formativa Attività formative a scelta dello studente (art.10, comma 5, lettera a)

Canale unico

Erogazione 1001186 CALCOLO NUMERICO in Ingegneria Informatica e dei sistemi per le Telecomunicazioni LM-27 COTRONEI MARIANTONIA
Docente Mariantonia COTRONEI
Obiettivi N.D.
Programma ARITMETICA FLOATING-POINT E ANALISI DEGLI ERRORI
Rappresentazione dei numeri in un calcolatore. Precisione numerica. Aritmetica floatingpoint. Errori e loro propagazione. Condizionamento di un problema matematico. Stabilità di un algoritmo.

SISTEMI DI EQUAZIONI LINEARI
Richiami di calcolo matriciale. Analisi di stabilità per sistemi lineari. Numero di condizionamento di una matrice.
Metodi diretti. Risoluzione di sistemi triangolari. Metodo di eliminazione di Gauss. Pivoting. Fattorizzazione LU.
Metodi iterativi. Matrice di iterazione. Convergenza e rapidità di convergenza. Criteri d'arresto. Metodo di Richardson e del gradiente.

APPROSSIMAZIONE DI FUNZIONI E DI DATI
Interpolazione polinomiale. Polinomio interpolatore nella forma di Lagrange. Interpolazione trigonometrica e FFT. Effetto Runge. Interpolazione con funzioni spline. Spline lineari e cubiche.
Approssimazione nel senso dei minimi quadrati. Sistemi sovradeterminati.

OTTIMIZZAZIONE NUMERICA
Ottimizzazione non vincolata.
Metodi per funzioni monodimensionali: bisezione, Newton, di ricerca dicotomica, sezione aurea, interpolazione parabolica.
Metodi di discesa: gradiente, Newton, quasi-Newton, gradiente coniugato.
Cenni su metodi di ottimizzazione vincolata.

INTRODUZIONE AL MATLAB
Ambiente di calcolo scientifico Matlab: comandi principali, matrici, funzioni matematiche. Istruzioni per la grafica. Progettazione e sviluppo dei programmi.
Implementazione di metodi numerici e analisi/validazione dei risultati su problemi test.
Testi docente A. Quarteroni, F. Saleri, P. Gervasio. Calcolo Scientifico. Esercizi e problemi risolti con MATLAB e Octave, Springer.
Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram