Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

Semiconductor electronic devices

Corso Ingegneria Elettrica ed Elettronica LM-28
Curriculum Electrical and Electronic Engineering
Orientamento Orientamento unico
Anno Accademico 2022/2023
Crediti 6
Settore Scientifico Disciplinare ING-INF/01
Anno Secondo anno
Unità temporale Primo semestre
Ore aula 48
Attività formativa Attività formative affini ed integrative

Canale unico

Docente RICCARDO CAROTENUTO
Obiettivi The target of this module is an in-depth study of the themes concerning the principles of operation and the design of solid-state semiconductor devices.
One or more analytical models are presented and discussed for each device, together with a SPICE model. Some fundamental techniques for numerical modeling are also discussed.
The competences acquired with this module allow the student to understand how, by means of the carrier generation, recombination, transport in semiconductors it is possible to design devices with given electrical characteristics, such as diodes, transistors, sensors.
Moreover, fundamental concepts are provided concerning the design and fabrication of optoelectronic devices used in modern fiber optic communications systems.
Knowledge and understanding: after passing the exam the student knows the basic principles of operation of semiconductor electronic devices. He knows the methods to obtain a one-dimensional analytical models for the characteristics of solid-state devices. He knows the techniques for the experimental characterization of these devices.
Ability to apply knowledge: after passing the exam the student is able to compare the characteristics of devices and identify the one or those most suitable for each application.
Autonomy of judgment: in order to pass the exam the student must independently answer theoretical, analytical and design questions with free answer and is therefore led to develop an independent judgment on the completeness and correctness of the provided answers.
Communication skills: he is able to illustrate the theoretical and technical motivations behind the properties of known devices.
Learning skills: after passing the exam the student is able to learn independently the basic characteristics of other solid state electronic devices.

The assessment and evaluation examinations consist of:
- in a written test, designed to ascertain the ability to analyze the operation of major semiconductor electronic devices, maximum grade 30/30;
- in an oral exams, designed to ascertain understanding of the theoretical and analytical models underlying the physical operation of solid-state devices. Knowledge of techniques for experimental characterization of these devices, maximum grade 30/30.
The final grade is the arithmetic mean of the marks obtained in the two exams.

In order to pass the exam, with a minimum grade of 18/30, it is necessary that the subject knowledge/skills be at least at an elementary level for both the written and oral parts.
A grade between 20/30 and 24/30 is awarded when the student is able to perform correctly in the written part but possesses elementary skills in the theoretical part.
A grade between 25/30 and 30/30 is awarded when the student is able to perform the written part correctly and demonstrates good skills in the theoretical part.
Students who have acquired excellent skills in both the written and theoretical parts may be awarded honors.
Programma Semiconductor materials properties
Reverse and forward biased P-N junction; switching behaviour of the p-n junction, SPICE model
Bipolar Junction Transistor, active region, Early effect, low and moderate emitter bias. Deep saturation, transit time
MOS structure, band configuration under several bias conditions, CCD systems, C-V characteristics, oxide and interface charges
Threshold voltage in a MOS device, electrical characteristics, MOSFT parameters, power MOSFETs, SPICE models
Design of solid state devices by means of Computer Aided Design tools
Thermistors, junction-based temperature sensors, optical temperature sensors
Photodiodes: photogeneration of carriers, photogenerated current, avalenche photofdiodes, photoresistors, bias circuit of photodiodes
Silicon photonics: silicon waveguides, electro-optical effects in silicon, other photonic materials, phase and amplitude integrated optical modulators (Fabry-Perot, Mach-Zehnder, Ring Resonator)
Solar cells.
Piezoresistive and piezoelectric effects
Power transistors (DMOS, IGBT) and basic application circuits
Laboratory experiences on the characterization and use of photodiodes, temperature sensors, switching diodes, power transistors
Testi docente R. S. Muller - T. I. Kamins “Dispositivi elettronici nei circuiti integrati” Ed. Boringhieri
G. Giustolisi, G. Palumbo “Introduzione ai dispositivi elettronici” Ed._Franco Angeli
S. Dimitrijev “Understanding semiconductor devices” Ed. Oxford University Press
S. M. Sze “Dispositivi a semiconduttore” - Ed. Hoepli
S. Middelhoek “Silicon sensors”

Lessons' notes and slides.
Erogazione tradizionale
Erogazione a distanza
Frequenza obbligatoria No
Valutazione prova scritta
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No
Docente SANDRO RAO
Obiettivi The target of this module is an in-depth study of the themes concerning the principles of operation and the design of solid-state semiconductor devices.
One or more analytical models are presented and discussed for each device, together with a SPICE model. Some fundamental techniques for numerical modeling are also discussed.
The competences acquired with this module allow the student to understand how, by means of the carrier generation, recombination, transport in semiconductors it is possible to design devices with given electrical characteristics, such as diodes, transistors, sensors.
Moreover, fundamental concepts are provided concerning the design and fabrication of optoelectronic devices used in modern fiber optic communications systems.
Knowledge and understanding: after passing the exam the student knows the basic principles of operation of semiconductor electronic devices. He knows the methods to obtain a one-dimensional analytical models for the characteristics of solid-state devices. He knows the techniques for the experimental characterization of these devices.
Ability to apply knowledge: after passing the exam the student is able to compare the characteristics of devices and identify the one or those most suitable for each application.
Autonomy of judgment: in order to pass the exam the student must independently answer theoretical, analytical and design questions with free answer and is therefore led to develop an independent judgment on the completeness and correctness of the provided answers.
Communication skills: he is able to illustrate the theoretical and technical motivations behind the properties of known devices.
Learning skills: after passing the exam the student is able to learn independently the basic characteristics of other solid state electronic devices.

The assessment and evaluation examinations consist of:
- in a written test, designed to ascertain the ability to analyze the operation of major semiconductor electronic devices, maximum grade 30/30;
- in an oral exams, designed to ascertain understanding of the theoretical and analytical models underlying the physical operation of solid-state devices. Knowledge of techniques for experimental characterization of these devices, maximum grade 30/30.
The final grade is the arithmetic mean of the marks obtained in the two exams.

In order to pass the exam, with a minimum grade of 18/30, it is necessary that the subject knowledge/skills be at least at an elementary level for both the written and oral parts.
A grade between 20/30 and 24/30 is awarded when the student is able to perform correctly in the written part but possesses elementary skills in the theoretical part.
A grade between 25/30 and 30/30 is awarded when the student is able to perform the written part correctly and demonstrates good skills in the theoretical part.
Students who have acquired excellent skills in both the written and theoretical parts may be awarded honors.
Programma Giunzione PN in polarizzazione inversa, Giunzione PN in polarizzazione diretta, Diodo PIN
Commutazione del diodo, Modelli SPICE
Effetto transistor, Funzionamento in regione attiva, Effetto Early, Deboli ed elevate polarizzazioni di emettitore, Tempo di transito nella base
Distribuzione delle bande nella struttura MOS, Regimi di polarizzazione, Sistemi CCD, Capacità del sistema MOS, Carica nell’ossido ed all’interfaccia
Tensione di soglia nei MOSFET, Caratteristiche corrente tensione, Parametri del transistor MOSFET, Modelli SPICE
CAD per lo sviluppo di dispositivi a stato solido, Applicazioni di strumenti CAD commerciali
Termistori, Sensori di temperatura integrati, Reticoli di Bragg
Fotodiodi: generazione ottica e correnti fotogenerate, fotodiodi a valanga, Fotoresistori Polarizzazione ed amplificazione.
Dispositivi optoelettronici e fotonici in silicio, guide ottiche, effetti elettro-ottici nel silicio, proprietà fondamentali dei materiali per applicazioni fotoniche, modulatori ottici di ampiezza e di fase integrati in guida d’onda (Fabry-Perot, Mach-Zehnder, Ring Resonator)
Cella solare.
Effetto piezoresistivo ed effetto piezoelettrico, Relazioni stress/carica e campo elettrico/deformazione, Transistor di potenza (DMOS, IGBT) e circuiti fondamentali di utilizzo
Esperienze di laboratorio sulla caratterizzazione ed uso di fotodiodi, sensori di temperatura, diodi in commutazione, transistor di potenza
Testi docente R. S. Muller - T. I. Kamins “Dispositivi elettronici nei circuiti integrati” Ed. Boringhieri
G. Giustolisi, G. Palumbo “Introduzione ai dispositivi elettronici” Ed._Franco Angeli
S. Dimitrijev “Understanding semiconductor devices” Ed. Oxford University Press
S. M. Sze “Dispositivi a semiconduttore” - Ed. Hoepli
S. Middelhoek “Silicon sensors”
Materiale didattico fornito dal docente
Erogazione tradizionale
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta
Valutazione prova orale
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram