Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

ELETTROTECNICA

Corso INGEGNERIA INFORMATICA, ELETTRONICA E DELLE TELECOMUNICAZIONI
Curriculum Elettronica e Biomedica
Anno Accademico 2024/2025
Anno 2
Crediti 12
Ore aula 96

Modulo: ELETTROTECNICA_I

Crediti 6
Ore aula 48
Settore Scientifico Disciplinare ING-IND/31 - ELETTROTECNICA
Attività formativa Affine/Integrativa
Ambito Attività formative affini o integrative

Docente

Foto Francesco Carlo MORABITO
Responsabile Francesco Carlo MORABITO
Crediti 6
Semestre Primo Ciclo Semestrale

Informazioni dettagliate relative all'attività formativa

Il corso di Elettrotecnica si propone di introdurre lo studente ai fondamenti dei circuiti elettrici con riferimento alla teoria dei circuiti ma anche deducendo le principali grandezze elettriche e le proprietà di base dai modelli stazionari e quasi stazionari dell’elettromagnetismo. Il corso mira a fornire una base culturale e metodologica per lo studio di alcuni concetti chiave nell’ambito dell’Ingegneria dell’Informazione.

Il corso si prefigge di far sviluppare allo studente capacità di analisi orientata alla soluzione di problemi circuitali anche mediante la simulazione al calcolatore. Il corso è

indirizzato, infine, a far acquisire allo studente competenze pratiche per l’implementazione di tecniche e metodi di analisi dei circuiti, attraverso esercitazioni di laboratorio opportunamente strutturate, inquadrando la disciplina nel più ampio contesto multidisciplinare dell’ingegneria.  

Il corso è diviso in due moduli da 6 CFU tenuti da docenti diversi.


Ultimo aggiornamento: 10-09-2024

Renzo Perfetti – Circuiti Elettrici Seconda Edizione – Ed. Zanichelli, 3a edizione, 2024

Giorgio Rizzoni –Elettrotecnica: principi e applicazioni, Seconda edizione - McGraw-Hill

Chua, Desoer, Kuh – Circuiti lineari e non lineari – Jackson

G. Miano – Lezioni di Elettrotecnica – CUEN Napoli

Esercizi e addizionale materialedidattico distribuito durante le lezioni del corso.


Ultimo aggiornamento: 10-09-2024

Modulo I – Conoscenza e comprensione dei fondamenti della teoria dei circuiti. Conoscenza e comprensione degli strumenti metodologici per lo studio dei circuiti elettrici. Conoscenza degli elementi rappresentativi di base della modellistica elettrica (bipoli, quadrupoli, n-poli, doppi bipoli). Conoscenza degli strumenti per lo studio di reti lineari tempo-invarianti proprie dell’elettrotecnica. Comprensione del legame fra circuiti e campi elettrici e magnetici. Comprensione delle limitazioni dei modelli e delle approssimazioni introdotte. Capacità di analizzare reti elettriche in regime stazionario e in regime sinusoidale. Capacità di analizzare e comprendere il funzionamento di basilari circuiti elettrici con assegnate caratteristiche e con l’ausilio della teoria dei grafi. Comprensione delle proprietà delle diverse classi di circuiti. Capacità di analisi e utilizzo di n-poli. Capacità di applicare le conoscenze acquisite per la risoluzione di reti elettriche complesse anche con tecniche al calcolatore.


Dettaglio del programma:


Reti elettriche in regime stazionario (Crediti 4)

 

Modello circuitale, passaggio campi-circuiti e definizione delle grandezze elettriche fondamentali; definizione di bipolo e di n-polo; reti di bipoli; classificazione e convenzioni; caratteristiche esterne; metodi grafici; riduzioni di circuiti semplici; leggi di Kirchhoff per le correnti e le tensioni; teorema di conservazione delle potenze virtuali (Tellegen); elementi di topologia delle reti: grafo orientato, nodo, lato, maglia, anello, albero, coalbero, insieme di taglio, matrice di incidenza e relative proprietà, matrice delle maglie; matrici fondamentali; metodi generali di risoluzione delle reti elettriche: correnti di maglia e potenziali nodali: formulazione matriciale del sistema fondamentale; potenza elettrica assorbita/erogata e relative convenzioni; teoremi sulle reti: sovrapposizione, generatori equivalenti (Thévenin e Norton), non amplificazione, reciprocità, compensazione; bipoli resistivi lineari e non lineari: definizione e caratteristiche; n-poli e n-bipoli lineari passivi: analisi e sintesi; sostituzione ed equivalenza: trasformazione stella-polilatero; doppi bipoli resistivi; caratterizzazione di doppi bipoli; concetto di bipolo equivalente per piccoli segnali; trasformatore ideale e giratore; teorema del massimo trasferimento di potenza; il software di simulazione dei circuiti elettrici Spice: esercitazioni di laboratorio.


Reti lineari e non lineari in condizioni dinamiche generali (Crediti 2)

 

Equazioni dinamiche e soluzione nel dominio del tempo, variabili di stato, problema di valore iniziale; termini transitorio e permanente, evoluzione libera e forzata; definizione di risposta della rete ad un determinato ingresso, risposta al gradino ed all'impulso, integrale di convoluzione; Bipoli non lineari; bipoli tempo varianti; linearizzazione; caratteristiche lineari a tratti; analisi lineare a tratti di una rete non lineare; spazio degli stati; circuiti non lineari e tempo varianti.


Ultimo aggiornamento: 10-09-2024

E' consigliata la preventiva acquisizione dei principali contenuti fisico-matematici del primo anno di corso.


Ultimo aggiornamento: 10-09-2024

Il corso prevede principalmente lezioni frontali ed esercitazioni in aula.


Ultimo aggiornamento: 10-09-2024

Il docente è tipicamente disponibile per spiegazioni dopo la fine della lezione.


Ultimo aggiornamento: 10-09-2024

L'esame (unico) consiste in una prova scritta che precede una discussione orale sullo scritto e sui contenuti del corso. Lo studente può comunque svolgere la prova orale anche se sconsigliato in base alle evidenze della prova scritta.


Ultimo aggiornamento: 10-09-2024

Impatto potenziale su SDGs 4,5,7,9,11, 13.


Ultimo aggiornamento: 10-09-2024


Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Modulo: ELETTROTECNICA_II

Crediti 6
Ore aula 48
Settore Scientifico Disciplinare ING-IND/31 - ELETTROTECNICA
Attività formativa Affine/Integrativa
Ambito Attività formative affini o integrative

Docenti

Foto non disponibile
Responsabile Cosimo IERACITANO
Crediti 3
Semestre Primo Ciclo Semestrale

Foto Nadia Mammone
Responsabile Nadia Mammone
Crediti 3
Semestre Primo Ciclo Semestrale

Informazioni dettagliate relative all'attività formativa

Reti elettriche in regime sinusoidale e in condizioni dinamiche generali (6 CFU)

Grandezze periodiche e sinusoidali, bipoli in regime sinusoidale, impedenza ed ammettenza, metodo simbolico e rappresentazione fasoriale, estensione dei teoremi sulle reti al regime sinusoidale; potenza in regime sinusoidale: potenza istantanea e potenza complessa; legame tra potenza istantanea e potenza attiva e reattiva; definizioni e teoremi di conservazione; rifasamento monofase; analisi qualitativa di reti in regime sinusoidale, massimo trasferimento di potenza in regime sinusoidale; sovrapposizione di regimi sinusoidali.

Circuiti risonanti: criteri generali ed applicazioni alle reti elettriche RLC serie ed RLC parallelo, pulsazione di risonanza, fattore di qualità, banda passante a 3dB e frequenze di taglio. Risposta in frequenza, funzioni di rete e proprietà filtranti dei circuiti.

Doppi bipoli. Rappresentazione di doppi bipoli resistivi privi di generatori indipendenti: matrice delle resistenze; matrice delle conduttanze, matrice ibrida 1 e 2, matrice di trasmissione; configurazione a T e a pi greco. Collegamento di doppi bipoli in serie o in parallelo alle porte. Estensione ai doppi bipoli dinamici privi di generatori indipendenti.

Soluzione di circuiti dinamici nel dominio del tempo. Circuiti del primo ordine: circuiti RC ed RL in evoluzione libera e forzata, circuiti del primo ordine autonomi, stabilità, risposta transitoria e permanente. Circuiti del secondo ordine: circuiti RLC serie e parallelo in evoluzione libera e forzata, risoluzione di circuiti autonomi del secondo ordine, metodo delle equazioni di stato.

Trasformata di Laplace. Risposta della rete ad un determinato ingresso, risposta al gradino ed all'impulso, integrale di convoluzione; applicazioni della trasformata di Laplace alle reti lineari tempo-invarianti.

Sistemi Trifase simmetrici ed equilibrati e squilibrati, collegamenti interfasici a stella e a triangolo, correnti e tensioni di fase e di linea, metodi di risoluzione delle reti trifase. Cenni sulle potenze nei circuiti trifase, fattore di potenza, inserzione Aron e misure di potenza. Cenni sui circuiti mutuamente accoppiati, trasformatore ideale, modello equivalente del trasformatore reale.


Ultimo aggiornamento: 25-09-2024

Perfetti R. – Circuiti Elettrici - Zanichelli

De Magistris M., Miano G. – Circuiti, Fondamenti di circuiti per l’Ingegneria – Springer

Chua, Desoer, Kuh – Circuiti lineari e non lineari – Jackson

Panella M., Rizzi A., Esercizi di elettrotecnica, Esculapio.

Repetto M., Leva S. – Elettrotecnica Elementi di teoria ed esercizi – CittàStudi Edizioni


Ultimo aggiornamento: 25-09-2024

Il corso di Elettrotecnica si propone di introdurre lo studente ai fondamenti dei circuiti elettrici con riferimento alla teoria dei circuiti ma anche deducendo le principali grandezze elettriche e le proprietà di base dai modelli stazionari e quasi stazionari dell’elettromagnetismo. Il corso mira a fornire una base culturale e metodologica per lo studio di alcuni concetti chiave nell’ambito dell’Ingegneria.

CONOSCENZA E COMPRENSIONE:

Comprensione del legame fra circuiti e campi elettrici e magnetici; comprensione delle limitazioni dei modelli e delle approssimazioni introdotte; capacità di analizzare reti elettriche in regime stazionario e sinusoidale; comprensione delle proprietà delle diverse classi di circuiti; conoscenza e comprensione degli strumenti metodologici per l’analisi delle reti elettriche in regime transitorio; conoscenza e comprensione delle rappresentazioni ingresso-uscita delle reti elettriche.

CAPACITA' DI APPLICARE CONOSCENZA E COMPRENSIONE:

Il corso è orientato a far acquisire allo studente competenze sull’applicazione di tecniche e metodi di analisi dei circuiti, tale obiettivo viene perseguito attraverso esercitazioni opportunamente strutturate, inquadrando la disciplina nel più ampio contesto multidisciplinare dell’ingegneria.

AUTONOMIA DI GIUDIZIO:

A fine corso, e in particolare al superamento dell’esame, lo studente avrà acquisito la capacità di elaborare un proprio approccio alla risoluzione dei circuiti, valutando di volta in volta pro e contro delle metodiche applicabili.

ABILITA' COMUNICATIVE:

Attraverso una continua interazione docente–studente, il corso orienterà all’acquisizione del linguaggio proprio della teoria dei circuiti e permetterà allo studente di affinare la capacità di esprimersi con linguaggio tecnico appropriato.

CAPACITA' DI APPRENDIMENTO:

Al superamento dell’esame, lo studente avrà acquisito la capacità di affrontare autonomamente la risoluzione dei circuiti applicando i concetti teorici acquisiti. Viceversa, l’applicazione pratica dei concetti teorici permetterà di comprenderli a fondo e rielaborarli; lo studente svilupperà così un approccio teorico-pratico alle materie ingegneristiche.


Ultimo aggiornamento: 25-09-2024

Conoscenze di base dell'analisi matematica: risoluzione di sistemi lineari di equazioni, calcolo di derivate, calcolo di integrali, risoluzione di equazioni differenziali del primo e del secondo ordine, trigonometria, conoscenza delle matrici e delle operazioni matriciali, operazioni con i numeri complessi. Concetti fondamentali di elettromagnetismo.


Ultimo aggiornamento: 25-09-2024

Lo svolgimento del corso prevede: lezioni teoriche frontali, esercitazioni pratiche volte all’acquisizione dei metodi di risoluzione dei circuit. Le lezioni sono caratterizzate da una continua interazione docente-studente volta a promuovere un apprendimento attivo.


Ultimo aggiornamento: 25-09-2024

La prova d'esame consiste in una prova scritta ed una prova orale. Nella prova scritta si valutano sia la comprensione delle tematiche oggetto del corso, sia le capacità di risolvere effettivamente i problemi proposti. La prova scritta ha durata massima di due ore, è costituita da 3 esercizi ed è valutata in trentesimi:

- Es. 1 incentrato sugli argomenti in programma per il modulo 1 (max 10 punti)

- Es. 2 Risoluzione di circuiti in regime sinusoidale (max 10 punti)

- Es. 3 Risoluzione di circuiti dinamici lineari nel dominio del tempo o mediante la Trasformata di Laplace (max 10 punti)

L’esito della prova scritta sarà espresso mediante le seguenti fasce di valutazione:

- insufficiente (inferiore a 17/30)

- quasi sufficiente (17/30)

- sufficiente (da 18/30 a 20/30)

- discreto (da 21/30 a 23/30)

- buono (da 24/30 a 26/30)

- ottimo (da 27/30 a 30/30)

La prova orale mira a valutare le capacità critiche sviluppate dallo studente ed il rigore metodologico nell’impostazione e formulazione dei problemi e nella dimostrazione, in particolare, dei teoremi delle reti elettriche. La prova orale è volta a verificare il livello di maturazione delle conoscenze degli argomenti proposti nonché la capacità di esposizione dei contenuti teorici della disciplina.

Il voto finale sarà attribuito considerando l'esito della prova scritta e l’esito della discussione orale, secondo i seguenti criteri di valutazione:

30 - 30 e lode: conoscenza completa, approfondita e critica degli argomenti, ottima proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;

27 - 29: conoscenza completa e approfondita degli argomenti, piena proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;

24 - 26: conoscenza degli argomenti con un buon grado di apprendimento, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;

21 - 23: conoscenza adeguata degli argomenti, ma mancata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, limitata capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;

18 - 20: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, capacità interpretativa sufficiente, capacità di applicare le conoscenze basilari acquisite;

Insufficiente: qualora lo studente decidesse di sostenere la prova orale, si valuterà se le conoscenze complessive possano essere ritenute sufficienti al superamento dell’esame.


Ultimo aggiornamento: 25-09-2024


Ulteriori informazioni

Nessun avviso pubblicato
Nessuna lezione pubblicata
Codice insegnamento online non pubblicato

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram