Questo sito utilizza cookie tecnici propri e di terze parti, necessari al suo funzionamento, e, con il tuo consenso, cookie di profilazione ed altri strumenti di tracciamento di terze parti, utili per esporre video ed analizzare il traffico al fine di misurare l'efficacia delle attività di comunicazione istituzionale. Puoi rifiutare i cookie non necessari e di profilazione cliccando su "Solo cookie tecnici". Puoi scegliere di acconsentirne l'utilizzo cliccando su "Accetta tutti" oppure puoi personalizzare le tue scelte cliccando su "Personalizza".
Per maggiori informazioni consulta la nostra privacy policy.

Solo cookie tecnici Personalizza Accetta tutti

vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page Home page

FISICA DEI DISPOSITIVI A STATO SOLIDO

Corso INGEGNERIA ELETTRICA ED ELETTRONICA
Curriculum Automazione Industriale
Anno Accademico 2024/2025
Anno 1
Crediti 6
Ore aula 48
Settore Scientifico Disciplinare FIS/01 - FISICA SPERIMENTALE
Attività formativa Affine/Integrativa
Ambito Attività formative affini o integrative

Docente

Foto Giacomo MESSINA
Responsabile Giacomo MESSINA
Crediti 6
Semestre Primo Ciclo Semestrale

Informazioni dettagliate relative all'attività formativa

Programma di Fisica dei dispositivi a stato solido AA 2024-2025

Introduzione alla struttura della materia

Crisi della Fisica Classica – Modelli atomici: Thompson, Rutherford, Bohr - Natura ondulatoria della materia – Teoria quantistica di Schroedinger e funzione d’onda – Esempi: particella libera, buca di potenziale, barriera di potenziale, oscillatore armonico, atomo di idrogeno.

Solidi

Materiali cristallini, policristallini ed amorfi - Struttura cristallina di Silicio, Germanio, Arseniuro di Gallio, Nitruro di Gallio, Carburo di silicio – Politipismo – Vibrazioni dei cristalli - Diffrazione delle onde da un cristallo - Diffrazione dei raggi X – Legge di Bragg per i raggi X – Condizioni per la diffrazione

Gas di Fermi

Gas di elettroni liberi in una, due e tre dimensioni – Densità di stati – Elettroni in un potenziale periodico - Bande di energia - Modello di Kronig-Penney - Classificazione dei materiali sulla base della struttura a bande: metalli, semiconduttori ed isolanti.

Cristalli semiconduttori

Semiconduttori intrinseci ed estrinseci - Concentrazione di portatori intrinseci – Gap di banda – Cammino libero medio e tempo libero medio – Mobilità - Conduttività – Diffusione dei portatori – Relazione di Einstein - Dipendenza dalla temperatura di Egap e della mobilità – Energia di Fermi - Calcolo della concentrazione di elettroni e lacune in banda di conduzione e in banda di valenza – Livello di Fermi in semiconduttori intrinseci e drogati – Densità efficace degli stati in banda di conduzione NC e di valenza NV - Legge di azione di massa - Iniezione di portatori – Processi di generazione e ricombinazione – Ricombinazione diretta – Ricombinazione indiretta – Equazione di continuità -

Giunzione p-n

Condizione di equilibrio termodinamico – Elettrostatica della giunzione p-n – Regione di svuotamento –Giunzione brusca - Potenziale di built-in Vbi - Capacità di svuotamento – Giunzione brusca asimmetrica – Giunzione metallo-semiconduttore – Eterogiunzioni – Tipi di eterogiunzioni: nP, Np, nN, pP - Diagrammi a bande di energia – Gas di elettroni bidimensionale – Elettrostatica della eterogiunzione - Diodo Tunnel – Assorbimento ottico - Proprietà ottiche dei semiconduttori e band gap diretta e indiretta – Diodo Laser – Emissione stimolata e inversione di popolazione – Cavità ottica – Threshold current

Struttura Metallo-Ossido-Semiconduttore

Diagramma a bande della struttura MOS - Effetto della tensione di polarizzazione - Condizioni di banda piatta, di accumulo, di svuotamento, di inversione - Capacità del sistema MOS - Proprietà elettroniche del sistema MOS -

 


Ultimo aggiornamento: 28-09-2024

Neamen D.A., "Semiconductor Physics and Devices Basic Principles", Mc Graw-Hill

S.M. Sze, "Physics of Semiconductor Devices", Wiley-Interscience

R.S. Muller, T.I. Kamins "Dispositivi Elettronici nei circuiti integrati", Bollati Boringhieri


Ultimo aggiornamento: 28-09-2024

L’obiettivo formativo del corso di “Fisica dei dispositivi a stato solido” è trasferire agli studenti i principi fondamentali e le leggi fisiche alla base del funzionamento dei dispositivi elettronici e fotonici, la cui conoscenza è essenziale per una piena comprensione del loro funzionamento e per la progettazione di dispositivi innovativi, anche alla luce dei recenti rapidi progressi nelle nanotecnologie.

Particolare attenzione è rivolta alla risoluzione di problemi sulle strutture cristalline dei semiconduttori di interesse per applicazioni elettroniche/fotoniche (Si, Ge, GaAs, GaN, SiC), sulla struttura a bande di omogiunzioni ed eterogiunzioni, sulla elettrostatica di omo- ed etero-giunzioni, sulle proprietà ottiche dei solidi.


DESCRITTORI DI DUBLINO

Conoscenza e comprensione: al superamento dell’esame lo studente conosce e ha compreso la classificazione delle principali strutture cristalline di interesse per l’elettronica/fotonica, i meccanismi che determinano la formazione di una barriera di potenziale in omo- ed etero-giunzioni, i fondamenti della Teoria Quantistica dei solidi e la loro applicazione ai diagrammi a bande di energia in generiche strutture a semiconduttore, i principi fisici alla base del funzionamento dei dispositivi emettitori di luce (LED e diodi laser).


Capacità di applicare conoscenza e comprensione: al superamento dell’esame lo studente è in grado di applicare le conoscenze teoriche acquisite per la risoluzione di problemi anche complessi di fisica dei semiconduttori utilizzando le leggi fondamentali della Teoria Quantistica dei solidi, per tracciare i diagrammi a bande e calcolare il potenziale di built-in in omo- ed etero-giunzioni, per confrontare semiconduttori e solidi con differenti proprietà ottiche.


Autonomia di giudizio: al superamento dell’esame lo studente è in grado di esaminare criticamente i risultati ottenuti nella risoluzione di problemi. A seguito del superamento dell’esame, lo studente sarà in grado di riconoscere situazioni in cui applicare le competenze acquisite, di identificare la tipologia di problema e di valutare autonomamente possibili alternative per la sua risoluzione.


Abilità comunicative: a seguito del superamento dell’esame, lo studente è in grado di comunicare le conoscenze acquisite attraverso un linguaggio tecnico-scientifico adeguato a interlocutori specialisti e non specialisti.


Capacità di apprendimento: a seguito del superamento dell’esame, lo studente è in grado di approfondire in autonomia le conoscenze acquisite e di applicarle autonomamente allo studio dei nuovi argomenti da affrontare nella prosecuzione del proprio percorso di studio e in ambito lavorativo.


Ultimo aggiornamento: 28-09-2024

Nessun prerequisito


Ultimo aggiornamento: 28-09-2024

Lezioni in aula ed esercitazioni


Ultimo aggiornamento: 28-09-2024

L’esame consiste in due prove, una scritta e una orale.

La prova scritta ha lo scopo di accertare la capacità dello studente di applicare le conoscenze acquisite durante il corso alla risoluzione di problemi anche complessi riguardanti l’elettrostatica elettrostatica di omo- ed etero-giunzioni, i diagrammi a bande e il potenziale di contatto in omo- ed etero-giunzioni, le proprietà ottiche dei solidi e dei semiconduttori.

Il superamento della prova scritta consente l’accesso alla prova orale.

 

La prova orale è volta ad accertare il livello di conoscenza e comprensione dei contenuti del corso, di valutare l'autonomia di giudizio, la capacità di apprendimento e le abilità comunicative. La prova orale consiste nella discussione della prova scritta, in domande e/o esercizi sui contenuti del corso.

Il voto finale delle prove di esame è determinato tenendo conto sia della prova scritta che della prova orale.


Schema di valutazione

30 e lode: conoscenza completa, approfondita e critica degli argomenti, eccellente proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;

28 - 30: conoscenza completa e approfondita degli argomenti, ottima proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti;

24 - 27: conoscenza degli argomenti con un buon grado di padronanza, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, buona capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti;

20 - 23: conoscenza adeguata degli argomenti ma limitata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, più che sufficiente capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti;

18 - 19: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, sufficiente capacità interpretativa, sufficiente capacità di applicare le conoscenze di base acquisite;

<18 Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso.


Ultimo aggiornamento: 28-09-2024


Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessuna lezione pubblicata
Codice insegnamento online pubblicato. Per visualizzarlo, autenticarsi in area riservata.

Impostazione cookie

Cerca nel sito

 

Posta Elettronica Certificata

Direzione

Tel +39 0965.1693217/3252

Fax +39 0965.1693247

Indirizzo e-mail


Protocollo

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Didattica e orientamento

Tel +39 0965.16933385

Fax +39 0965.1693247

Indirizzo e-mail

Indirizzo e-mail

Segreteria studenti

Tel +39 0965.1691475

Fax +39 0965.1691474

Indirizzo e-mail

Amministrazione

Tel +39 0965.1693214

Fax +39 0965.1693247

Indirizzo e-mail


Ricerca

Tel +39 0965.1693422

Fax +39 0965.1693247

Indirizzo e-mail

Social

Facebook

Twitter

YouTube

Instagram